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Learning Objectives

• Fairness notions.

• Key ideas used in fair-RL solutions.

• Mathematical performance guarantees.
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Introduction to Reinforcement
Learning



Multi-armed Bandits

• Stateless (or single-state) reinforcement learning.

• Classical bandits: In each round t = 1, 2, . . . ,T ,
• the algorithm selects an action it from the available actions, and

• the algorithm receives as feedback a reward rt according to RewardFunctiont (it ).

• Contextual bandits: In each round t = 1, 2, . . . ,T ,
• the algorithm observes a context vector xt ∈ C ⊆ Rd ,

• the algorithm selects an action it from the available actions, and

• the algorithm receives as feedback a reward rt according to RewardFunctiont (xt , it ).

• Notations
• Total number of actions = A.

• Total number of rounds = T .

• Number of dimensions in a context/feature vector = d (wherever applicable).

• Number of actions that can be selected in each round = m (wherever applicable).
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Markov Decision Processes

• Multi-state reinforcement learning.

• Episodic MDP: Learning proceeds in episodes of length H.

• In each episode, at h = 1, 2, . . . ,H,
• at the beginning of the round, the algorithm is in state sh,

• the algorithm selects an action ih from the available actions,

• the algorithm receives a reward according to RewardFunctionh(sh, ih), and

• the environment transitions to the next state sh+1 according to TransitionFunctionh(sh, ih).

• Notations
• Total number of states = S.

• Total number of actions = A.

• Episode length = H.

• Total number of episodes = E .

• Total number of agents = N (wherever applicable).
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Performance Measure: Regret

• Algorithm’s objective is to maximize its cumulative reward (aka, return).

• Regret: Difference between the optimal return and the algorithm’s return.

• Maximizing return is equivalent to minimizing regret.

• Throughout this tutorial, we will see regret bounds using
• Big-Oh notation, and

• Õ : O(X · log terms) = Õ(X).

• Goal: Sublinear (in #rounds T or in #episodes E) regret bound.
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Common Solution Strategies

• Upper Confidence Bound (UCB) Algorithms
• Compute an estimate of the relevant quantity (i.e. reward or transition probabilities).

• Build confidence intervals around these estimates.

• “Optimism in the face of uncertainty”: Selection favours the choice with the highest upper
confidence bound.

• Thompson Sampling (aka Posterior Sampling) Algorithms
• Maintain belief (prior ) distribution(s) about relevant quantities.

• Sample a set of parameters from prior distribution(s).

• Selection based on samples.

• Update belief (posterior ) distributions.
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Fairness Notions and
Corresponding RL Solutions



Fairness Notions

• Group Fairness

• Distance/Metric/Similarity-based Fairness

• Minimum Selection Criteria

• Counterfactual Fairness

• Nash Social Welfare

• Maxi-min Welfare

• Generalized Gini Welfare
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Group Fairness

(Parity across subgroups)



Group Fairness in Multi-armed Bandits

• Fairness notion: Parity in expected mean reward for subgroups [1].

• Key idea: Adjusted Upper Confidence Bound (UCB) = UCB + fairness penalty,
where fairness penalty = linear function of the disparity in observed mean rewards.

• Actions showing high disparity ⇒ Decreased adjusted UCB.

• Performance guarantee: [1] prove an upper bound of Õ(d
√

T ) on cumulative
regret.
(Same order as the corresponding bound for fairness-unaware RL solutions, albeit
with a larger constant.)

Concern: Assumption that rewards for the decision-maker are aligned with rewards
for subgroups.
(Not always the case.)
For example, in credit lending scenario:
• the decision-maker’s reward ≡ maximize profits via loan repayments, and

• any subgroup’s reward ≡ get more loans.

[1] Wen Huang, Kevin Labille, Xintao Wu, Dongwon Lee and Neil Heffernan. Achieving User-Side Fairness in Con-
textual Bandits. In Human-Centric Intelligent Systems, 2022.
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Group Fairness with Distinct Rewards in Multi-agent Episodic MDPs

• [2] make a distinction between decision-maker’s rewards and subgroups’ rewards.

• Agents belonging to different subgroups interact with the environment according to
the sub-group specific transition functions.

• Fairness-aware objective: Maximize return of the decision-maker with the
constraint that difference in returns of any two agents ≤ α (fairness tolerance).

• Assumption: Access to a policy satisfying the fairness constraint with α0 < α.
(Allows for exploration without violating fairness guarantees.)

• Key idea: For a pair of subgroups, compute optimistic and pessimistic estimates.

• Performance guarantees:
• sublinear cumulative regret (in #episodes E), and

• fairness constraint is never violated with arbitrarily high probability.

[2] Harsh Satija, Alessandro Lazaric, Matteo Pirotta and Joelle Pineau. Group Fairness in Reinforcement Learning,
TMLR 2023.

9



Metric/Distance/Similarity-based
Fairness

(“Similar individuals should be
treated similarly.”)



Meritocratic Fairness

• [3] consider meritocratic fairness in contextual bandits.

• Fairness constraint: Given a merit function f ,
if f (i) ≥ f (j),
selection probability of i ≥ selection probability of j [3].

• [3] consider merit function to be the expected reward.

• Key idea: Use confidence intervals (CI) to link actions.
CI of action 1

CI of action 2
CI of action 3

• Performance guarantee: Cumulative regret bound of Õ(dAm
√

T ).
where m is the maximum #actions that can be selected at each round.

Concern 1: Allows a subgroup best by only a small margin to be selected all the time.

Concern 2: Does not constrain the algorithm in case one subgroup is much better.

[3] Matthew Joseph, Michael Kearns, Jamie Morgenstern, Seth Neel and Aaron Roth. Fair Algorithms for Infinite and
Contextual Bandits. arXiv:1610.09559.
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Smooth Fairness and Calibrated Fairness - I

[4] propose:

• Smooth fairness — Actions with similar reward distributions should be selected with
similar probability (similarity determined by a given divergence function), and

• Calibrated fairness — Select each action with probability equal to its realized
reward being the highest.

Illustrative Example: Bandit problem with two actions.

• Action 1: P(r1 = 1) = 1 i.e. E[r1] = 1.

• Action 2: P(r2 = 0) = 0.52 and P(r2 = 2) = 0.48 i.e. E[r2] = 0.96.

• Meritocratic Fairness: Always select action 1 over action 2.

• Smooth Fairness: In every round, probability of selecting action 1 is close to that of
action 2.

• Calibrated Fairness: In every round, select action 1 with probability 0.52 and action 2
with probability 0.48.

[4] Yang Liu, Goran Radanovic, Christos Dimitrakakis, Debmalya Mandal and David C. Parkes. Calibrated Fairness
in Bandits. arXiv:1707.01875.
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Smooth Fairness and Calibrated Fairness - II

• Fairness regret = Cumulative amount by which an algorithm is miscalibrated
=
∑T

1 E
[∑A

i=1 max
(
P(realized reward of i is highest)− P(i is selected), 0

)]
.

• Objective: Devise a solution
• adhering to smooth fairness in each round, and

• minimizing fairness regret.

• [4] propose a solution based on Thompson sampling with an initial exploration phase
which ensures that all actions have been sampled enough.

• Performance guarantees:
• Smooth fairness in each round.

(W.r.t. the divergence function of total variation distance.)

• Fairness regret = Õ(AT )2/3.

Might be difficult to specify a suitable divergence function (or distance/similar metric)
for individuals.

[4] Yang Liu, Goran Radanovic, Christos Dimitrakakis, Debmalya Mandal and David C. Parkes. Calibrated Fairness
in Bandits. arXiv:1707.01875.
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Individual Fairness with Unknown Distance Metric

• [5] consider contextual bandits with the fairness constraint:
|SelectionProbability(i)− SelectionProbability(j)| ≤
DistanceMetric(contexti , contextj ).

• Unknown DistanceMetric.

• Oracle assumption: Selection rule
input−−−→ Oracle

output−−−→ Pairs of actions for which
fairness constraint is violated.

• Objectives:
• Minimize regret w.r.t. the best fair policy.

• Minimize number of fairness violations.

• Solution based on upper confidence bound and optimism principle.

• Performance guarantees:
• Regret w.r.t. the best fair policy = Õ

(
A2d2 log (T ) + d

√
T
)

• Fairness constraint violations of more than ϵ on at most O(A2d2 log (d/ϵ)) rounds.

[5] Stephen Gillen, Christopher Jung, Michael Kearns, Aaron Roth. Online Learning with an Unknown Fairness
Metric. NeurIPS 2018.
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Minimum Selection Criteria



Fairness in Wireless Scheduling using Multi-armed Bandits

• Clients (symbolized as actions) compete for a shared wireless channel.

• Multiple actions (up to m) can be selected in each round.

• Some actions can be “sleeping” (i.e. unavailable) and the set of available actions is
revealed to the algorithm at the beginning of each round.

• Asymptotic fairness criteria: Selection fraction of action i ≥ vi asymptotically.
lim infT→∞

∑T
t=1 E[IndicatorFunction(i is selected at t)] ≥ vi .

• Performance guarantees: Cumulative regret w.r.t. the best fair policy is
O(

√
mAT log T + A).

Concern: Fairness guarantees not anytime but only asymptotic.

[6] Fengjiao Li, Jia Liu and Bo Ji. Combinatorial Sleeping Bandits with Fairness Constraints. IEEE Conference on
Computer Communications 2019.
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Anytime Fairness Guarantees with Minimum Selection Criteria

• Robot-human collaboration where each human teammate is represented by an
action and selecting an action corresponds to assigning resources.

• Motivation: Vastly unequal resource assignment leads to loss of trust.

• Fairness criteria: Minimum selection rate for every action is at least v
(either anytime from 1 to T , or in expectation).

• Proposed UCB-based solutions for above fairness criteria.

• Performance guarantee: Cumulative regret w.r.t. the best fair policy
O(

√
AT log T + A log T ).

• Characterization of regret in terms of the minimum selection rate v is also
possible.(Not always tight, bound can sometimes become trivial i.e. linear in T .)

[7] Houston Claure, Yifang Chen, Jignesh Modi, Malte Jung and Stefanos Nikolaidis. Multi-Armed Bandits with Fair-

ness Constraints for Distributing Resources to Human Teammates. ACM/IEEE International Conference on Human-

Robot Interaction, 2020.
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Cost of Fairness with Minimum Selection Criteria

• Anytime fairness criteria: Selection fraction of action i ≥ vi − α.

• [8] propose a meta-algorithm that can use any suitable bandit algorithm as a
black-box.

• Performance guarantees:
• Cumulative regret w.r.t. the best fair policy is O

(√
AT log T

)
.

• Also proved a problem-dependent regret bound which grows as log T .
(consistent with classical fairness-unaware bandits literature).

• Cost of fairness (Regret w.r.t. the best policy):
• When fairness tolerance α is high,

(i.e. α > vi − 8 log T
T∆2

i
for all suboptimal i , where ∆i is the suboptimlaity gap),

⇒ regret bound grows as log T .

• When fairness tolerance α is low,
⇒ regret bound grows as T .

[8] Vishakha Patil, Ganesh Ghalme, Vineet Nair, Y. Narahari. Achieving Fairness in the Stochastic Multi-Armed Bandit
Problem. JMLR, 2021.
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Counterfactual Fairness



Counterfactual Fairness

• Contextual Bandits for recommender system.
• Each item (symbolized as action) has a feature vector y ∈ Y .

• User arriving at round t has a feature vector xt ∈ X .

• The algorithm recommends an item based on (xt , y).

• Fairness constraint: Expected reward for a user remains within α if their protected
attribute were changed to its counterpart.
Fairness tolerance: α.

• Causal graph

Y

X

I

R

where R represents reward and I represents intermediate features between Y and
R.

• Key idea: Find W ⊆ Y ∪ X ∪ I that d-separates reward R from features
(Y ∪ X ) \W.

• [9] propose an upper confidence bound algorithm based on W.

• Performance guarantee: Regret bound of O
( √

WT
LinearFunction(α)

)
.

[9] Wen Huang, Lu Zhang and Xintao Wu. Achieving Counterfactual Fairness for Causal Bandit, AAAI, 2022. 17



Welfare-based Notions



Nash Social Welfare in Multi-agent Multi-armed Bandits

• N agents, A actions.

• When agent i selects action j , reward r ∼ with mean µi,j .

• Policy π: Select action j with probability πj .

• Nash social welfare (NSW): Product of the expected reward of the agents
i.e. NSW (π) =

∏N
i=1

(∑A
j=1 πj · µi,j

)
.

• Fairness-aware objective: Minimize regret =
∑T

t=1 [NSW (π∗)− NSW (πt )],
where π∗ ∈ argmaxNSW (π) and πt is the policy being followed at round t .

• Key idea: Use upper confidence bound for NSW and optimism principle.

• Performance guarantee: Regret bound of Õ
(√

T min
(√

NK 3/2,NK
))

.

• Caveat: Exact implementation involves a NP-hard optimization problem.
Polynomial-time approximation scheme is available unresolved

======⇒ Regret?

[10] Safwan Hossain, Evi Micha and Nisarg Shah. Fair Algorithms for Multi-Agent Multi-Armed Bandits. NeurIPS,
2021.

18



Nash Social Welfare in Multi-agent Markov Decision Processes

• N agents.

• In each episode of length H, at h = 1, 2, . . . ,H,
• reward for agent i for action jh in state sh is according to RewardFunctioni (sh, jh);

(separate reward function for each agent)

• the environment transitions to the next state sh+1 according to TransitionFunction(sh, jh).

• Value of policy π corresponding to agent i
= Valueπ(i) = Eπ

[∑H
h=1 RewardFunctioni (sh, jh)

]
.

• Nash social welfare (NSW): Product of the values received by all the agents
i.e. NSW (π) =

∏N
i=1 Valueπ(i).

• Fairness-aware objective: Minimize regret
∑E

e=1 NSW (π∗)− NSW (πe),
where π∗ ∈ argmaxNSW (π) and πe is the policy being followed in episode e.

• Key idea: Upper confidence bound for NSW and optimism principle.

• Performance guarantee: Regret bound of Õ(NHN+1S
√

AE).

[11] Debmalya Mandal and Jiarui Gan. Socially Fair Reinforcement Learning. arXiv:2208.12584.
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Maxi-Min Welfare in Multi-agent Markov Decision Processes

• Same problem formulation as previous slide.

• In each episode of length H, at h = 1, 2, . . . ,H,
• reward for agent i for action jh in state sh is according to RewardFunctioni (sh, jh);

(separate reward function for each agent)

• the environment transitions to the next state sh+1 according to TransitionFunction(sh, jh).

• Return or Value of policy π corresponding to agent i
= Valueπ(i) = Eπ

[∑H
h=1 RewardFunctioni (sh, jh)

]
.

• Minimum welfare (MW): MW (π) = mini=1,2,...,N Valueπ(i)

• Fairness-aware objective: Minimize regret
∑E

e=1 MW (π∗)− MW (πe),
where π∗ ∈ argmaxMW (π) and πe is the policy being followed in episode e.

• Key idea: Upper confidence bound for MW and optimism.

• Performance guarantee: Regret bound of Õ(H2S
√

AE).
(Independent of the number of agents N, unlike Nash social welfare bound).

[11] Debmalya Mandal and Jiarui Gan. Socially Fair Reinforcement Learning. arXiv:2208.12584.
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Generalized Gini Welfare in Multi-agent Markov Decision Processes

• Same problem formulation as previous slide.

• In each episode of length H, at h = 1, 2, . . . ,H,
• reward for agent i for action jh in state sh is according to RewardFunctioni (sh, jh);

(separate reward function for each agent)

• the environment transitions to the next state sh+1 according to TransitionFunction(sh, jh).

• Return or Value of policy π corresponding to agent i
= Valueπ(i) = Eπ

[∑H
h=1 RewardFunctioni (sh, jh)

]
.

• Generalized Gini welfare (GGW) (generalization of Maxi-min welfare).
• Given weight vector w with wi ≥ 0,

∑
i wi = 1 and w1 ≥ w2 · · · ≥ wN (descending order).

• i1, i2, . . . , iN : An ordering with Valueπ(i1) ≤ Valueπ(i2) · · · ≤ Valueπ(iN ) (ascending order).

• Generalized Gini Welfare: Weighted sum of values received by all the agents
i.e. GGW (π) =

∑N
k=1 wkValueπ(ik ).

(Agent receiving lowest value has highest weight, . . . .)

• When w1 = 1, generalized Gini welfare reduces to minimum welfare.

• Fairness-aware Objective: Minimize regret
∑E

e=1 GGW (π∗)− GGW (πe),
where π∗ ∈ argmaxGGW (π) and πe is the policy being followed in episode e.

• Performance guarantee: Regret bound of Õ(H2S
√

AE).
(Independent of the number of agents N, unlike Nash Social Welfare bound).

[11] Debmalya Mandal and Jiarui Gan. Socially Fair Reinforcement Learning. arXiv:2208.12584.
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Summary

• Group fairness: Parity across subgroups
• Contextual bandits.

• Multi-agent episodic MDPs.

• Distance/metric/similarity-based fairness: “Similar individuals treated similarly.”
• Meritocratic fairness.

• Smooth fairness and calibrated fairness.

• Individual fairness with unknown distance metric.

• Minimum Selection Criteria
• Asymptotic fairness guarantees.

• Anytime fairness guarantees.

• Cost of achieving minimum selection criteria.

• Counterfactual Fairness: Causal approach to fairness

• Nash Social Welfare

• Maxi-min Welfare

• Generalized Gini Welfare

Thank you.
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