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Fairness in multi-agent decision-making 

Multi-agent (player)  
systems

Single overall metric  
to be maximized 

(individual fairness)

Multiple metrics,  
including fairness 

(often group 
fairness)

Make sure some 
group statistic (e.g.  
sd) is good  

Make sure 
solution/policy is fair 
for all



Fairness in multi-agent decision-making 
problems 
• The system aims to maximize one single performance metric, e.g.,

allocating bandwidths, optimizing waiting time of roads/drivers 
with traffic light, minimizing distance in parcel delivery

• Typically, the system’s objective is aligned with users’ utility, and a 
utilitarian objective (social welfare) is generally adopted:

𝑣 = 𝑣1 + 𝑣2 + ⋯ + 𝑣𝑛

• Individual fairness: the total utility should be distributed to users 
in a fair way -> natural to model in RL
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Fairness in multi-agent decision-making 
problems (2)
• The system aims to maximize one or more performance metrics 
• Example: Human-robot collaboration in order picking in warehouses

• Decision: assigning human pickers to robots  
• System objective: to maximize pick rate (min picking time)
• Human pickers’ workload is influenced by the decision but not directly aligned 

with the system objective  
• The system needs to optimize for two different metrics (pick rate and work load 

fairness)

• Group fairness often used
• statistical parity in the decisions 
• less preferred than individual fairness but easier to model in RL
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Example: multi-objective fair RL in practice 
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Multi-agent (user)  
system Multi-objective, 

single agent RL 
 

Single overall metric  
to be maximized 

(individual fairness)

Multiple metrics,  
including fairness 

(group fairness) Each objective: reward 
of each metric



TITLE SLIDE
Exampl e sl ides t o hel p you cr eate present ati ons fast  and good

Learning efficient and fair 
policies for collaborative
human-robot order 
picking

Smit, I. G., Bukhsh, Z., Pechenizkiy, M., 
Alogariastos, K., Hendriks, K., & Zhang, Y. 
(2024). Learning Efficient and Fair Policies 
for Uncertainty-Aware Collaborative Human-
Robot Order Picking. arXiv.org. 



Order Picking:  crucial component of warehouse operation 
                      a sequential decision problem

?

?
!
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Robot Leading:

Picruns are 
assigned  to 
AMRs; 
AMR moving to a 
picking location;
A human picker 
is assigned to 
AMR; 
Repeat 
 



Text & Image (large)

• Develop a ‘picker optimizer’ in human-robot 
collaborative picking using RL

• Decision: Allocate human order pickers to 
incoming orders/AMRs

• Optimization objectives
• Max pick rate → Nr. of picked orders per hour
• Fairness:  Ergonomic regulations: lifting workloads 

• minimize standard deviation of carried product 
masses of pickers
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Multi-objective optimization problem



A typical multi-objective optimization problem

Multiple policies (non-dominated) 
solutions 

• The Pareto Front is the set of non-
dominated solutions. For each 
solution (policy in an RL problem) on 
the Pareto Front, no other solution 
has a better value for all objectives, 
called Pareto efficiency
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States: features related to pick rate
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States: features related to workload fairness 
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Rewards 

• Pick rate efficiency: Penalty on time that passes

  𝑅𝑡
efficiency

= 𝜏𝑡−1 − 𝜏𝑡

• Fairness
• Minimize standard deviation of carried product masses
    penalty on increase in standard deviation
   

𝑅𝑡
fairness = 𝜎 𝑊1,𝑡−1, … , 𝑊 𝒦 ,𝑡−1 − 𝜎 𝑊1,𝑡 , … , 𝑊 𝒦 ,𝑡
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A typical multi-objective optimization problem

Multiple policies (non-dominated) 
solutions 

• The Pareto Front is the set of non-
dominated solutions. For each 
solution (policy in an RL problem) on 
the Pareto Front, no other solution 
has a better value for all objectives, 
called Pareto efficiency
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Multi-objective learning algorithm

• Extend Proximal Policy Optimization (PPO) by adding an 
evolutionary component  

• (A meta-policy approach, to present non-dominated set)
• Train initial set of policies on variety of objective weights
• Evolutionary loop:

• For each policy, predict which weights can help improve objective the 
most

• Select new weights to optimize based on predicted improvement
• Update policies for several policy-gradient iterations  
• Update Pareto Front
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Multi-Objective Aware Network
  
• Node-specific information, distributional information, workload 

fairness features
• Feature Separation: enable more stable learning
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Experiment:  trade-off between fairness and pick rate
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This MORL policy:  
by sacrificing just 
6.7% of pick rate 
efficiency,  it 
decreases the 
workload standard 
deviation by 78.6%

Experiment:  trade-off between fairness and pick rate
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MORL even 
improves the 
pure fairness 
solution!

Experiment:  trade-off between fairness and pick rate



Fair MORL for collaborative human-robot 
order picking in warehouses

• Good trade-off between picking time and fairness
• Explicitly outline achievable trade-offs
• Simultaneous improvement of picking times and workload 

fairness
• Price of fairness is low!  

• Is this the best way of modelling and achieving fairness? We don’t 
know. 
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Example 

Multi-agent (user)  
system

Multi-objective, 
single agent RL 

 Single overall metric  
to be maximized 

(individual fairness)

Multiple metrics,  
including fairness 

(group fairness)

Each objective: reward 
of each user 



Siddique, U., Weng, P. and Zimmer, M., 2020, November. Learning fair policies in 
multi-objective (deep) reinforcement learning. ICML. 

• Use generalized Gini social welfare function (GGF) to model rewards of 

• A multi-objective MDP is defined as (D is nr of objectives)
• Reward: 
• Value function (with discounted reward): 
• Objective fuction 

• All take value in 
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Fair optimization problem

• Integrating GGF with MOMDPs,  a fair optimization problem is 
formulated, which is the problem of determining a policy that 
generates a fair distribution of rewards to D fixed users

Some theretical properities (see paper)
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• DQN, A2C and PPO algorithms are adapted 
• Traffic light: to learn a controller that optimizes the expected waiting
 times per road.
• Trade off: worse average waiting times, better fairness (GGF scores) 
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Why fairness? 
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Why fairness?

•Societal value: responsible and trustworthy AI
  e.g. Zhang, X., Tu, R., Liu, Y., Liu, M., Kjellstrom, H., Zhang, K. and Zhang, 
            C., 2020. How do fair decisions fare in long-term qualification?

•Economic value
•Fairness may lead to higher long-term economic 

value 
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A case study
Fair Task Allocation in the Port of Rotterdam 
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Fair task allocation in Port of Rotterdam
Challenge: 
Increasing inter-terminal 
transport jobs

Solution: 
Using existing trucks at the port 
to do ITT jobs

A task allocation problem
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Task allocation problem
• Inputs:

• Tasks with finite time windows 
• Companies that own trucks

• agents with available resources during given time periods, incurring 
costs for doing tasks

• Output: an allocation of tasks among companies with maximized 
optimization objectives   
• number of allocated jobs is maximized
• total cost is minimized
• allocation is fair to the participating companies 
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Which fairness notion?

- Individual fairness is important
 so, we first find most fair index, and then optimize cost

• We  do not want to add too much computational complexity
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Which fairness
notion?

- max-min fairness 
   
-  The new algorithm
  guarantees optimal fairness, and 
  min cost, and
  it stays polynomial!
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What is the price of introducing 
fairness in matching for 
platform? 
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Experiments: one-time matching

•  What is the extra cost of using fair matching?
 

 Price of fairness =  total cost of fair policy
total cost of myopic policy

− 1 

 
• Testing with different market scenarios
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• Price of Fairness for platform
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• Price of Fairness for platform
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In these scenarios, 
price of fairness is 
extremely small 



Hypothesis:

Fair matching leads to higher social 
welfare & higher business value in long-
term
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A simulation study

• Model companies’ participation behavior in repeated 
matching games

• Their behaviors are influenced by matching 
outcomes

• Their behaviors influence the matching outcome 
of future rounds 
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Agent behavioral model
• Agent’s behavior (i.e., participation probability) is dependent on 

experiences in previous rounds.
• Model agent’s participation decision using prospect (loss-aversion) 

theory
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Evaluation

•      Social welfare = (total value of allocated jobs –
      total cost)

     Simulate 50 rounds (i.e. days) of matching
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In the long run:
• more allocated jobs
• more participants 
• increased social welfare

Fairness leading to 
higher economic & social value! 
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Many work on fair optimization, although not RL
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Challenge: fairness RL for decision-making 

• Lack of overview on 
• Which fairness notions are most appropriate for different problems, 

which are both meaningful and operationally feasible (computable)

• Modeling fairness:  a need for guidelines on how to effectively 
integrate fairness within the RL paradigm. 

46



Fairness in multi-agent decision-making 
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Multi-agent (player)  
systems

Multi-objective, single 
agent RL 

 
Single overall metric  

to be maximized 
(individual fairness)

Multiple metrics,  
including fairness 

(group fairness)

Each objective: reward 
of each player 

Each objective: reward 
of each type

Multi-agent, single 
objective RL 

 
Each agent: reward of 

each player 

Each agent: each reward 
type 



Challenge: from computational point of view

• Some fairness notions are easier to be incorporated into existing 
optimization models/algorithms, e.g., max-min, Jain’s index, Nash 
social welfare measure

• Many not: 
“even with very simple preferences (additive), deciding whether there is 
a Pareto-efficient and envy-free allocation is computationally very 
hard” 
  - De Keijzer et al., 2009 

  also see: Brandt et al., 2012: computational social choice
• Solving complex decision-making (NP-hard) problems with RL is 

still immature 
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