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Fairness in multi-agent decision-making

Multi-agent (player)
systems

Single overall metric
to be maximized
(individual fairness)

Multiple metrics,
including fairness
(often group
fairness)

Make sure
solution/policy is fair
for all

Make sure some
group statistic (e.g.
sd) is good



Fairness in multi-agent decision-making
problems

* The system aims to maximize one single performance metric, e.g.,
allocating bandwidths, optimizing waiting time of roads/drivers
with traffic light, minimizing distance in parcel delivery

* Typically, the system’s objective is aligned with users’ utility, and a
utilitarian objective (social welfare) is generally adopted:

V=V, TV + -+ 7V,

* Individual fairness: the total utility should be distributed to users
in a fair way -> natural to model in RL



Fairness in multi-agent decision-making
problems (2)

* The system aims to maximize one or more performance metrics

* Example: Human-robot collaboration in order picking in warehouses

* Decision: assigning human pickers to robots

* System objective: to maximize pick rate (min picking time)

* Human pickers’ workload is influenced by the decision but not directly aligned
with the system objective

* The system needs to optimize for two different metrics (pick rate and work load

fairness)

* Group fairness often used

» statistical parity in the decisions
* less preferred than individual fairness but easierto model in RL



Example: multi-objective fair RL in practice

Single overall metric
to be maximized
(individual fairness)

Multi-agent (user)

system Multi-objective,

single agent RL

including fairness

(group fairness) Each objective: reward
of each metric

‘ Multiple metrics,
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Order Picking: crucial component of warehouse operation

a sequential decision problem

o

28

Robot Leading:

Picruns are
assigned to
AMRs;

AMR moving to a
picking location;
A human picker
Is assigned to
AMR;

Repeat



Multi-objective optimization problem

* Develop a ‘picker optimizer’ in human-robot

collaborative picking using RL

* Decision: Allocate human order pickers to
iIncoming orders/AMRs

* Optimization objectives

reward
R,

* Max pick rate = Nr. of picked orders per hour
* Fairness: Ergonomic regulations: lifting workloads

* minimize standard deviation of carried product
masses of pickers

Environment

action




A typical multi-objective optimization problem

Multiple policies (hon-dominated)
solutions

* The Pareto Front is the set of non-
dominated solutions. For each
solution (policy in an RL problem) on
the Pareto Front, no other solution
has a better value for all objectives,
called Pareto efficiency
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States: features

related to pick rate

Current picker information
Location
Picker distance

Whether the picker 1= currently at the node.
Provides the distance between picker and the node throungh warehouse paths.

AMR(s) information
Loecation
# of AMESs going

Destination distance
Expected time until next destination
Expected time until two-step ahead

# of AMESs within same aizle
# of AMR waiting

Whether the AMR is currently at the node.

Number of AME= currently going towards the node.

Minimum travel distance of AMRs with this node as their destination or -10 if
none are traveling in towards the node.

Sum of estimated travel time to current destination, pick time at destination and
time until the next destination. Value of -10 if no AMR goes for the next pickrun,
otherwise AMRE with minimum travel time is selected.

Same as expected time until next destination feature but compute the estimates
for two-step ahead AMR destination.

AMR= poing to a destination within the same aisle as the considered node.
AMRs currently waiting in the same alsle as the considered node.

Picker positioning in the system
Location

Minimum travel distance
# of pickers
Distance of other pickers

Expected time of other pickers

Indicate if any picker other than the picker being assigned 1= at this node.
Minimum distance to this node among all pickers having this node as destination.
If none, the value is -10.

Number of pickers going to a destination within the same aisle as the considered
node.

Minimum distance of any other picker to its current destination plus the distance
from its current destination to the considered node.

Similar to the above, but considering the expected time, including expected
picking time at the current destination.

MNode region information
Aisle distance from origin

Node depth within aisle

How far the aisle of this node 15 from the origin, scaled by the warehouse size.
How far toward the beginning or end of the aizle a node is located, scaled by the

aisle length.

Mode neighborhood features
Closest next destination distances
Closest distances to two-step ahead.
Closest distance to pickers

Distances to closest unserved AMR=s

Closest and 2™ closest distance to the next destinations of the AMRs going to
this node. 0 if no AMEs or last node in the pickrun.

Same as above but for the closest two-step ahead destination.

Minimum distances from this node to the other nodes that are currently the
destination of any of the pickers.

Distances to the closest and 2" closest other nodes that are the destination of an
AMR and where no picker 15 already going.

Table 2:

List of state space features related to efficiency.
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States: features related to workload fairness

MNode specific workload information

: Total mass in kilograms that the picker at this node has picked subtracted by the mean
Current picker workload workload of all p?fi{ers._ P P by
MNext picker workload Same as above when the picker destination 18 the considered node.
Item weight Mass in kilograms of a single item stored at the node.
Waiting AMR workload Mass of the items that must be loaded on the waiting AMBHB= at this location.

Mass of the items that must be loaded on the AMEB=s that are going to this location but
are not yvet there,

Total masses carried by the two closest pickers to this node in terms of expected arrival
time, subtracted by the mean picker workload.

Destination AMRs workload

Closest picker workloads

Distributional workload information

Picker total workload Workload in kiloprams of the controlled picker subtracted by the mean picker workload.

Other picker workload I'-.'Iinimu_m, 5 apd 75P percentile, maxixmum workload of all pickers, subtracted by the
mean picker workload.
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Rewards

* Pick rate efficiency: Penalty on time that passes

efficiency
R, = Tt-1 — T¢

* Fairness
* Minimize standard deviation of carried product masses
penalty onincrease in standard deviation

R{aimess = U(W1,t—1» T VVI?CI,t—l) — U(W1,t» T VVIJCI,t)

R
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A typical multi-objective optimization problem

Multiple policies (hon-dominated)
solutions

* The Pareto Front is the set of non-
dominated solutions. For each
solution (policy in an RL problem) on
the Pareto Front, no other solution
has a better value for all objectives,
called Pareto efficiency
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Multi-objective learning algorithm

* Extend Proximal Policy Optimization (PPO) by adding an
evolutionary component

* (A meta-policy approach, to present non-dominated set)
* Train initial set of policies on variety of objective weights
* Evolutionary loop:

* For each policy, predict which weights can help improve objective the
most

* Select new weights to optimize based on predicted improvement
* Update policies for several policy-gradient iterations
* Update Pareto Front
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Multi-Objective Aware Network

* Node-specific information, distributional information, workload
fairness features

* Feature Separation: enable more stable learning

Aisle-Embedding Architecture Efficiency Embeddings ~ Combined

Efficiency Features

Invariant Feed-Forward
Invariant Feed-Forward

Input Graph Node Values

Invariant Feed-Forward

Invariant Feed-Forward
Invariant Feed-Forward

Workload Fairness Features Workload Fairness Embeddings
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Experiment: trade-off between fairness and pick rate
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Experiment: trade-off between fairness and pick rate

Workload Standard Deviation (kg)
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This MORL policy:
by sacrificing just
6.7% of pick rate
efficiency, it
decreases the
workload standard
deviation by 78.6%
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Experiment: trade-off between fairness and pick rate
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MORL even
Improves the
pure fairness
solution!

22



Fair MORL for collaborative human-robot
order picking in warehouses

* Good trade-off between picking time and fairness
* Explicitly outline achievable trade-offs

* Simultaneous improvement of picking times and workload
fairness

 Price of fairness is low!

* |s this the best way of modelling and achieving fairness? We don’t
know.

24



Example

Multi-objective,
single agent RL

Each objective: reward

(individual fairness) of each user

Single overall metric
‘ to be maximized

Multi-agent (user)
system

Multiple metrics,
including fairness
(group fairness)




Siddique, U., Weng, P. and Zimmer, M., 2020, November. Learning fair policies in
multi-objective (deep) reinforcement learning. ICML.

* Use generalized Gini social welfare function (GGF) to model rewards of
D
GGF,(v) =Y wiv],
i=1

* Amulti-objective MDP is defined as (D is nr of objectives)
* Reward: R _cRP
* Value function’(with discounted reward): V,,=Ep_
* Objective fuction

o
> VTR ]

argmax_ J () -

 All take valuein RD
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Fair optimization problem

* Integrating GGF with MOMDPs, a fair optimization problem is
formulated, which is the problem of determining a policy that
generates a fair distribution of rewards to D fixed users

argmax GGF o, (J (7)),

Some theretical properities (see paper)
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* DQN, A2C and PPO algorithms are adapted

* Traffic light: to learn a controller that optimizes the expected waiting
times per road.

* Trade off: worse average waiting times, better fairness (GGF scores)
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Figure 7. GGF scores of DQN, A2C, PPO, and their GGF versions,

with those of PPO and GGF-PPO when ~y is close to 1, during the
Figure 6. Average waiting times of DQN, A2C, PPO, and their testing phase in the TL domain.
GGF counterparts during learning phase, and those of the fixed
and random policies in the TL domain. 28



Why fairness?



Why fairness?

*Societal value: responsible and trustworthy Al

e.g. Zhang, X., Tu, R., Liu, Y., Liu, M., Kjellstrom, H., Zhang, K. and Zhang,
C., 2020. How do fair decisions fare in long-term qualification?

e Economic value

* Fairness may lead to higher long-term economic
value

30



A case study
Fair Task Allocation in the Port of Rotterdam



Fair task allocation in Port of Rotterdam

Challenge:

Increasing inter-terminal
transportjobs

Solution:
Using existing trucks at the port

todo ITT jobs

A task allocation problem

32



Task allocation problem

* Inputs:
* Tasks with finite time windows
* Companies that own trucks
* agents with available resources during given time periods, incurring
costs for doing tasks
* Output: an allocation of tasks among companies with maximized
optimization objectives
* number of allocated jobs is maximized
* total costis minimized
* allocation is fair to the participating companies

33



Which fairness notion?

- Individual fairness is important
so, we first find most fair index, and then optimize cost

* We do notwant to add too much computational complexity

34



Which fairness

notion?
Partial flow rork of P 3 Mb\
. . al tlow network o ;\_f/l
- max-min fairness P

- The new algorithm

guarantees optimal fairness, and
min cost, and

It stays polynomial!
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What is the price of introducing
falrness in matching for
platform?

[ [



Experiments: one-time matching

« What is the extra cost of using fair matching?

total cost of fair policy

Price of fairness = total cost of myopic policy

* Testing with different market scenarios

37



* Price of Fairness for platform
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Hypothesis:

Fair matching leads to higher social
welfare & higher business value in long-
term



A simulation study

* Model companies’participation behavior in repeated
matching games

* Their behaviors are influenced by matching
outcomes

* Theirbehaviorsinfluence the matching outcome
of future rounds

Platform [Algorithm s

& N0

41




Agent behavioral model

* Agent’s behavior (i.e., participation probability) is dependent on
experiences in previous rounds.

* Model agent’s participation decision using prospect (loss-aversion)
theory

-

Losses Gains

» outcome

Reference point
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Evaluation

e Social welfare = (total value of allocated jobs -
total cost)

Simulate 50 rounds (i.e. days) of matching

43



Average number of participants per round with high competition
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Many work on fair optimization, although not RL

Paper Measure Approach Solution  Domain

Kleinberg et al. (2001) Max-min fairness Approximation algorithm Single  Load balancing

Harks (2005) Proportional and max-min Lagrangian optimization Single  Bandwidth allocation
fairness

Pioro (2007) Max-min fairness Seq. lexicographic optimization Single  Bandwidth allocation

Ishida et al. (2006)
Pishdad et al. (2010)
Koppen et al. (2010)

Meng and Khoo
(2010)
Devarajan et  al.
(2012)
Tangpattanakul et al.
(2012)
Stolletz and Brunmner
(2012)

Escoffier et al. (2013)

Amaldi et al. (2013)
Bertin et al. (2014)
Yue and You (2014)
Yaacoub and Dawy
(2014)

Dely et al. (2015)
Partov et al. (2015)
Sawik (2015)

L. Xu et al. (2015)

Variance Z. Li et al. (2016)
Busa-Fekete et al
(2017)

X. Liu et al. (2017)
V. H. Nguyen and
Weng (2017)

Alabi et al. (2018)

Quality of service fairnes
Max-min fairness
Custom fairness measure

Jain's fairness index

Maximum difference

Doi et al. (2018)
Limmer and Dietrich
(2018)

Arribas et al. (2019)
Diao et al. (2019)

Custom fairness constrai
oe-fairness

Max-min fairness
Custom fairness measure
Nash bargaining fairness
Max-min and quality of
vice fairness

J. Jiang and Lu (2019)

Zhao (2019)

Max-min fairness

. Clausen et al. (2020)
Custom fairness measure
Custom fairness measure Jagtenberg and Ma-
son (2020)
Kermany et al. (2020)
Z. Zhang et al. (2020)

Z. Li et al. (2021)

Jain's fairness index

Lu and Wang (2021)
Malencia et al. (2021)
Munguia-Lépez and
Ponce-Ortega (2021)
Purushothaman and
Nagarajan (2021)

Max-min fairness

Generalized Gini Index

Max-min fairness

Generalized Gini Index

Multiple
fairness measures

convex — group-
Custom and max-min fairness
Custom fairness measure

a-fairness
Max-min fairness

Custom variance-based mea-
sure

Max-min and quality of ser-
vice fairness

Max-min and leximin fair-
ness, and variance

Nash social welfare

Custom fairness metric
Max-min fairness
Max-min fairness

Max-min fairness

Max-min fairness

Nash social welfare and max-
min fairness

Jain's fairness index

e-constraint method
Online gradient descent

Evolutionary algorithms
Primal-dual algorithm

Polynomial-time reduction method

Decomposition-based metaheuristic
Genetic Algorithm

Heuristic non-convex optimizer
Tterative algorithm

Hierarchical multi-agent RL

S ISIETS T

Rahmattalabi et al
(2021)

Tang et al. (2021)
Zhou et al. (2021)
Zimmer et al. (2021)

Alternating optimizatior
Genetic algorithm

MILP and local search

Genetic algorithm
Multi-objective local sea

MILP Arribas et al. (2022)

Fan et al. (2022)

F. Li et al. (2022)

Y. Liu, Huangfu, et al.
(2022)

Kuai et al. (2022)
Sadiq et al. (2022)

Y. Wang et al. (2022)

Alternating optimizatio
Supermodular algorithm
MILP

Evolutionary algorithm -

Gong and Guo (2023)
Y. Jiang et al. (2023)

Wau et al. (2023)

MILP

Genetic algorithm

Multi Network traffic offloading
Single  Multi-objective bandits
Single  Load balancing
Single  Classic combinatorial opti-
mization
Single  General multi-objective op-
timization
Single  Crew scheduling
Multi Dynamic pricing
Single  Network optimization
Single  Data allocation and trajec-
tory optimization
Single  Multi-agent RL
Multiple group-fairness mea-
sures
Gini coefficient
Variance

Max-min and proportional
fairness and Generalized Gini
Index

o-fairness

Nash social welfare

Custom fairness measure
Quality of service fairness

Max-min fairness
Custom fairness measure

Maximum difference

Gini coefficient adaptation
Custom fairness measure

Custom fairness measure

Ant colony system algorithm
multi-agent RL algorithm

Extremal optimization

(Q-learning adaptation

Genetic algorithm

Proximal stochastic gradient descent

Offline PPO
Non-linear marine predator algorithm
Genetic algorithm adaptation

Custom genetic approach

Genetic algorithm with large neighborhood
search

Multiple gradient descent

Single

Multi
Multi
Single

Single
Single
Multi
Single

Single
Single
Multi

Multi
Multi

Multi

Influence maximization

‘Water resource allocation
Crew scheduling
General multi-agent RL

Network Optimization
Multi-objective classic RL
Multi-workflow scheduling
UAV placement

Virtual network scheduling
Power allocation

Virtual power plant profit
allocation

Influence maximization
Airport gate assignment

Recommender System




Challenge: fairness RL for decision-making

| ack of overview on

* Which fairness notions are most appropriate for different problems,
which are both meaningful and operationally feasible (computable)

* Modeling fairness: a need for guidelines on how to effectively
Integrate fairness within the RL paradigm.
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Fairness in multi-agent decision-making

Multi-agent (player)
systems

Single overall metric
to be maximized
(individual fairness)

Multiple metrics,
including fairness
(group fairness)

Multi-objective, single
agent RL

Each objective: reward
of each player

Each objective: reward
of each type

Multi-agent, single
objective RL

Each agent: reward of
each player

j Each agent: each reward

type
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Challenge: from computational point of view

* Some fairness notions are easier to be incorporated into existing
optimization models/algorithms, e.g., max-min, Jain’s index, Nash
social welfare measure

* Many not:
“even with very simple preferences (additive), deciding whether there is
a Pareto-efficient and envy-free allocation is computationally very
hard”
- De Keijzer et al., 2009

also see: Brandtetal., 2072: computational social choice

* Solving complex decision-making (NP-hard) problems with RL is
still immature
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