Multi-agent with multiobjective RL

Yingqian Zhang

5 August

Fairness in multi-agent decision-making

Make sure solution/policy is fair for all

Make sure some group statistic (e.g. sd) is good

Fairness in multi-agent decision-making problems

- The system aims to maximize one single performance metric, e.g., allocating bandwidths, optimizing waiting time of roads/drivers with traffic light, minimizing distance in parcel delivery
- Typically, the system's objective is aligned with users' utility, and a utilitarian objective (social welfare) is generally adopted:

$$v = v_1 + v_2 + \dots + v_n$$

 Individual fairness: the total utility should be distributed to users in a fair way -> natural to model in RL

Fairness in multi-agent decision-making problems (2)

- The system aims to maximize one or more performance metrics
- Example: Human-robot collaboration in order picking in warehouses
 - Decision: assigning human pickers to robots
 - System objective: to maximize pick rate (min picking time)
 - Human pickers' workload is influenced by the decision but not directly aligned with the system objective
 - The system needs to optimize for two different metrics (pick rate and work load fairness)
- Group fairness often used
 - statistical parity in the decisions
 - less preferred than individual fairness but easier to model in RL

Example: multi-objective fair RL in practice

VANDERLANDE

Learning efficient and fair policies for collaborative human-robot order picking

Smit, I. G., Bukhsh, Z., Pechenizkiy, M., Alogariastos, K., Hendriks, K., & Zhang, Y. (2024). Learning Efficient and Fair Policies for Uncertainty-Aware Collaborative Human-Robot Order Picking. arXiv.org.

Order Picking: crucial component of warehouse operation a sequential decision problem

Robot Leading:

Picruns are assigned to AMRs; AMR moving to a picking location; A human picker is assigned to AMR; Repeat

Multi-objective optimization problem

- Develop a 'picker optimizer' in human-robot collaborative picking using RL
- Decision: Allocate human order pickers to incoming orders/AMRs
- Optimization objectives
 - Max pick rate \rightarrow Nr. of picked orders per hour
 - Fairness: Ergonomic regulations: lifting workloads
 - minimize standard deviation of carried product masses of pickers

A typical multi-objective optimization problem

Multiple policies (non-dominated) solutions

 The Pareto Front is the set of nondominated solutions. For each solution (policy in an RL problem) on fl(A)? the Pareto Front, no other solution has a better value for all objectives, called Pareto efficiency

States: features related to pick rate

Current picker information	Whether the picker is currently at the node						
Picker distance	Provides the distance between picker and the node through warehouse paths.						
AMR(s) information Location # of AMRs going	Whether the AMR is currently at the node. Number of AMRs currently going towards the node.						
Destination distance	Minimum travel distance of AMRs with this node as their destination or -10 if none are traveling in towards the node						
Expected time until next destination	Sum of estimated travel time to current destination, pick time at destination and time until the next destination. Value of -10 if no AMR goes for the next pickrun, otherwise AMR with minimum travel time is selected.						
Expected time until two-step ahead	Same as expected time until next destination feature but compute the estimates for two-step ahead AMR destination.						
# of AMRs within same aisle # of AMR waiting	AMRs going to a destination within the same aisle as the considered node. AMRs currently waiting in the same aisle as the considered node.						
Picker positioning in the system	Indicate if any nicker other than the nicker being assigned is at this node						
Minimum travel distance	Minimum distance to this node among all pickers having this node as destination.						
winning traver distance	If none, the value is -10. Number of pickers going to a destination within the same aisle as the considered						
# of pickers	node.						
Distance of other pickers	Minimum distance of any other picker to its current destination plus the distance from its current destination to the considered node.						
Expected time of other pickers	Similar to the above, but considering the expected time, including expected picking time at the current destination.						
Node region information Aisle distance from origin	How far the aisle of this node is from the origin, scaled by the warehouse size.						
Node depth within aisle	now far toward the beginning or end of the alsie a node is located, scaled by the aisle length.						
Node neighborhood features							
Closest next destination distances	Closest and 2^{nd} closest distance to the next destinations of the AMRs going to this node. 0 if no AMRs or last node in the pickrup.						
Closest distances to two-step ahead.	Same as above but for the closest two-step ahead destination.						
Closest distance to pickers	Minimum distances from this node to the other nodes that are currently the destination of any of the pickers.						
Distances to closest unserved AMRs	Distances to the closest and 2 nd closest other nodes that are the destination of an AMR and where no picker is already going.						

Table 2: List of state space features related to efficiency.

States: features related to workload fairness

Node specific workload information

Current picker workload	Total mass in kilograms that the picker at this node has picked subtracted by the mean workload of all pickers.							
Next picker workload	Same as above when the picker destination is the considered node.							
Item weight	Mass in kilograms of a single item stored at the node.							
Waiting AMR workload	Mass of the items that must be loaded on the waiting AMRs at this location.							
Destination AMRs workload	Mass of the items that must be loaded on the AMRs that are going to this location are not yet there.							
Closest picker workloads	Total masses carried by the two closest pickers to this node in terms of expected arrival time, subtracted by the mean picker workload.							
Distributional workload information								
Picker total workload	Workload in kilograms of the controlled picker subtracted by the mean picker workload.							
Other picker workloads	Minimum, 25 th and 75 th percentile, maximum workload of all pickers, subtracted by the mean picker workload.							

Rewards

• Pick rate efficiency: Penalty on time that passes

$$R_t^{\text{efficiency}} = \tau_{t-1} - \tau_t$$

- Fairness
 - Minimize standard deviation of carried product masses penalty on increase in standard deviation

$$R_t^{\text{fairness}} = \sigma(W_{1,t-1}, \dots, W_{|\mathcal{K}|,t-1}) - \sigma(W_{1,t}, \dots, W_{|\mathcal{K}|,t})$$

A typical multi-objective optimization problem

Multiple policies (non-dominated) solutions

 The Pareto Front is the set of nondominated solutions. For each solution (policy in an RL problem) on fl(A)? the Pareto Front, no other solution has a better value for all objectives, called Pareto efficiency

Discrete-Event Simulation

Multi-objective learning algorithm

- Extend Proximal Policy Optimization (PPO) by adding an evolutionary component
- (A meta-policy approach, to present non-dominated set)
 - Train initial set of policies on variety of objective weights
 - Evolutionary loop:
 - For each policy, predict which weights can help improve objective the most
 - Select new weights to optimize based on predicted improvement
 - Update policies for several policy-gradient iterations
 - Update Pareto Front

Multi-Objective Aware Network

- Node-specific information, distributional information, workload fairness features
- Feature Separation: enable more stable learning

Experiment: trade-off between fairness and pick rate

Experiment: trade-off between fairness and pick rate

This MORL policy: by sacrificing just 6.7% of pick rate efficiency, it decreases the workload standard deviation by **78.6%**

Experiment: trade-off between fairness and pick rate

MORL even improves the pure fairness solution!

Fair MORL for collaborative human-robot order picking in warehouses

- Good trade-off between picking time and fairness
 - Explicitly outline achievable trade-offs
 - Simultaneous improvement of picking times and workload fairness
 - Price of fairness is low!
- Is this the best way of modelling and achieving fairness? We don't know.

Siddique, U., Weng, P. and Zimmer, M., 2020, November. Learning fair policies in multi-objective (deep) reinforcement learning. ICML.

• Use generalized Gini social welfare function (GGF) to model rewards of

$$ext{GGF}_{m{w}}(m{v}) = \sum_{i=1}^D m{w}_i m{v}_i^{\uparrow},$$

- A multi-objective MDP is defined as (D is nr of objectives)
 - Reward: $\mathbf{R}_{a,s} \in \mathbb{R}^D$
 - Value function (with discounted reward):

$$V_{\pi,s} = \mathbb{E}_{\boldsymbol{P}_{\pi}} \left[\sum_{t=1}^{\infty} \gamma^{t-1} \boldsymbol{R}_t \mid s \right],$$

- Objective fuction $\operatorname{argmax}_{\pi} J(\pi)$
- All take value in \mathbb{R}^{D}

Fair optimization problem

• Integrating GGF with MOMDPs, a fair optimization problem is formulated, which is the problem of determining a policy that generates a fair distribution of rewards to D fixed users

 $\operatorname*{argmax}_{\pi} \operatorname{GGF}_{\boldsymbol{w}}(\boldsymbol{J}(\pi)),$

Some theretical properities (see paper)

- DQN, A2C and PPO algorithms are adapted
- Traffic light: to learn a controller that optimizes the expected waiting times per road.
- Trade off: worse average waiting times, better fairness (GGF scores)

Figure 6. Average waiting times of DQN, A2C, PPO, and their GGF counterparts during learning phase, and those of the fixed and random policies in the TL domain.

Figure 7. GGF scores of DQN, A2C, PPO, and their GGF versions, with those of PPO and GGF-PPO when γ is close to 1, during the testing phase in the TL domain.

Why fairness?

Why fairness?

Societal value: responsible and trustworthy AI

e.g. Zhang, X., Tu, R., Liu, Y., Liu, M., Kjellstrom, H., Zhang, K. and Zhang, C., 2020. How do fair decisions fare in long-term qualification?

Economic value

Fairness may lead to higher long-term economic value

A case study Fair Task Allocation in the Port of Rotterdam

Fair task allocation in Port of Rotterdam

Challenge: Increasing inter-terminal transport jobs

Solution: Using existing trucks at the port to do ITT jobs

A task allocation problem

Task allocation problem

- Inputs:
 - Tasks with finite time windows
 - Companies that own trucks
 - agents with available resources during given time periods, incurring costs for doing tasks
- Output: an allocation of tasks among companies with maximized optimization objectives
 - number of allocated jobs is maximized
 - total cost is minimized
 - allocation is fair to the participating companies

Which fairness notion?

- Individual fairness is important so, we first find most fair index, and then optimize cost
- We do not want to add too much computational complexity

Which fairness notion?

- max-min fairness
- The new algorithm

guarantees optimal fairness, and min cost, and

it stays polynomial!

What is the price of introducing fairness in matching for platform?

Experiments: one-time matching

• What is the extra cost of using fair matching?

$$\frac{\text{Price of fairness}}{\text{total cost of myopic policy}} - 1$$

• Testing with different market scenarios

Hypothesis:

Fair matching leads to higher social welfare & higher business value in long-term

A simulation study

- Model companies' participation behavior in repeated matching games
 - Their behaviors are influenced by matching outcomes
 - Their behaviors influence the matching outcome of future rounds

Agent behavioral model

- Agent's behavior (i.e., participation probability) is dependent on experiences in previous rounds.
- Model agent's participation decision using *prospect (loss-aversion)* theory

Evaluation

 Social welfare = (total value of allocated jobs – total cost)

Simulate 50 rounds (i.e. days) of matching

Average number of participants per round with high competition

In the long run:

- more allocated jobs
- more participants
- increased social welfare

Fairness leading to higher economic & social value!

Cumulative social welfare with high competition

Many work on fair optimization, although not RL

Paper	Measure	Approach	5	Solution	Domain						
Kleinberg et al. (2001) Harks (2005)	Max-min fairness Proportional and max fairness	Approximation a c-min Lagrangian optim	algorithm mization	Single Single	Load balancing Bandwidth allo	cation					
Pioro (2007)	Max-min fairness Seq. lexicographic optimization				Bandwidth allo	cation					
Ishida et al. (2006)	Variance	Z. Li et al. (2016)	Max-min fairness	e-const	traint method	1.0	Multi	Network traffic offload	ing		
Pishdad et al. (2010)	Quality of service fairnes	Busa-Fekete et al.	Generalized Gini Index	Online	gradient descent	i	Single	Multi-objective bandit	s		
Koppen et al. (2010) Mong and Khoo	Max-min fairness Custom fairness (2017)				0		0	0			
(2010)	Custom fairness measure	[°] X. Liu et al. (2017)	Max-min fairness	Evolut	ionary algorithm	S	Single	Load balancing			
Devarajan et al.	Jain's fairness index	V. H. Nguyen and	Generalized Gini Index	Prima	l-dual algorithm		Single	Classic combinatorial	opti-		
(2012)		Weng (2017)						mization			
Tangpattanakul et al.	Maximum difference	Alabi et al. (2018)	Multiple convex group-	Polyno	omial-time reduct	ion method	Single	General multi-objectiv	e op-		
(2012)		Doi et al. (2018)	Custom and max-min fairness	Decom	position-based m	etabeuristic	Single	Crew scheduling			
Stolletz and Brunner	Custom fairness constra	Limmer and Dietrich	Custom fairness measure	Geneti	c Algorithm		Multi	Dynamic pricing			
(2012) Eccofficer et al. (2012)	o foimpora	(2018)			0			· · ·			
Escomer et al. (2013)	α -narmess	Arribas et al. (2019)	α -fairness	Heuris	tic non-convex of	otimizer	Single	Network optimization			
Amaldi et al. (2013)	Max-min fairness	Diao et al. (2019)	Max-min fairness	Iterati	ve algorithm		Single	Data allocation and the	rajec-		
Bertin et al. (2014)	Custom fairness measure				1. 1. 1	DI	0.1	tory optimization			
Yue and You (2014)	Nash bargaining fairness	$_{\rm s}$ J. Jiang and Lu (2019)	Custom variance-based mea-	Hierar	chical multi-agen	t RL	Single	Multi-agent RL			
Yaacoub and Dawy	Max-min and quality of	f Zhao (2019)	Max-min and quality of ser-	Altern	ating optimizatio	1	0. 1	1170.1			
(2014)	vice fairness	2010)	vice fairness	meen	ating optimizatio	[*] Rahmattalabi et al.	. Multij	ple group-fairness mea-	MILP	Single	Influence maximization
Dely et al. (2015) Derten et al. (2015)	Max-min fairness	Clausen et al. (2020)	Max-min and leximin fair-	Geneti	c algorithm	(2021) Trans et al. (2021)	sures		Constitution allocatibles	M. let	Weter commence allocation
Sawik (2015)	Custom fairness measure		ness, and variance		_	Tang et al. (2021) Zhou et al. (2021)	Unior Variat	coemcient	Genetic algorithm	Multi	Water resource allocation
L. Xu et al. (2015)	Jain's fairness index	Jagtenberg and Ma-	Nash social welfare	MILP	and local search	Zimmer et al. (2021)	Max-r	nin and proportional	multi-agent BL algorithm	Single	General multi-agent RL
11 Htt of all (2010)	oun o functoo index	son (2020)		<i>a</i> .		2011) 2021)	fairnes	ss and Generalized Gini	mater agent feb algorithm	omgre	General mater agent fai
		Kermany et al. (2020)	Custom fairness metric	Geneti	ic algorithm		Index				
		Z. Znang et al. (2020) Z. Li et al. (2021)	Max-min fairness	MUU-	objective local se	^a Arribas et al. (2022)	α -fair	ness	Extremal optimization	Single	Network Optimization
		2.11 et al. (2021)	Wax-min faitness	WILLI		Fan et al. (2022)	Nash :	social welfare	Q-learning adaptation	Single	Multi-objective classic RL
		Lu and Wang (2021)	Max-min fairness	Altern	ating optimizatio	F. Li et al. (2022)	Custo	m fairness measure	Genetic algorithm	Multi	Multi-workflow scheduling
		Malencia et al. (2021)	Max-min fairness	Superi	nodular algorithm	Y. Liu, Huangfu, et al.	. Qualit	ty of service fairness	Proximal stochastic gradient descent	Single	UAV placement
		Munguía-López and	Nash social welfare and max-	MILP		(2022) Kuai et al. (2022)	Max-r	nin fairness	Offline PPO	Single	Virtual network scheduling
		Ponce-Ortega (2021)	min fairness			Sadig et al. (2022)	Custo	m fairness measure	Non-linear marine predator algorithm	Single	Power allocation
		Purushothaman and Jai Nagarajan (2021)	Jain's fairness index	Evolut	Evolutionary algorithm Y. Wa	Y. Wang et al. (2022)	Maxin	num difference	Genetic algorithm adaptation	Multi	Virtual power plant profi
						0 ()			· ·		allocation
						Gong and Guo (2023)) Gini c	coefficient adaptation	Custom genetic approach	Multi	Influence maximization
						Y. Jiang et al. (2023)	Custo	m fairness measure	Genetic algorithm with large neighborhood	Multi	Airport gate assignment
						W. (2020)	0		search	N. 1	45
						wu et al. (2023)	Custo	m fairness measure	Multiple gradient descent	Multi	Recommender System

Challenge: fairness RL for decision-making

- Lack of overview on
 - Which fairness notions are most appropriate for different problems, which are both meaningful and operationally feasible (computable)

• Modeling fairness: a need for guidelines on how to effectively integrate fairness within the RL paradigm.

Fairness in multi-agent decision-making

Challenge: from computational point of view

- Some fairness notions are easier to be incorporated into existing optimization models/algorithms, e.g., max-min, Jain's index, Nash social welfare measure
- Many not:

"even with very simple preferences (additive), deciding whether there is a Pareto-efficient and envy-free allocation is computationally very hard"

- De Keijzer et al., 2009

also see: Brandt et al., 2012: computational social choice

 Solving complex decision-making (NP-hard) problems with RL is still immature