

Advances in FairRL: Theory and Applications

Pratik Gajane, Mykola Pechenizkiy, Yingqian Zhang

https://fair-rl.github.io/

IJCAI 2024, Jeju, South Korea 5 August 2024

Goals of the Tutorial

- Why are there fairness consideration in RL?
- What is fair? How is fairness *defined*? *measured*?
- When should RL-based solutions to be fair?
- Where are fairness considerations in RL?
- **How** can we *achieve* fairRL?
- What is SOTA in fairRL theory & applications?
- What's next in fairRL?

Outline (each part ca 45 mins)

- Part I: Fair Algorithmic Decision Making (ADM)
 supervised fairML & fairRL perspectives
- Part II: Theoretical results in FairRL
 performance bounds (bandits, MDPs, MOMDPs)
- Part III: Multi-agent & Multi-objective fairRL
 - from single to multi-object fairML formulations
- Part IV: Future of fairRL
 - how do we bridge gaps in theory and practice

Interactions

- Feel free to interrupt during the tutorial
- Welcome to use Whova to post questions
- We aim to leave 5+ mins after Parts I-III and 15+ mins after Part IV.
- Coffee break 10:30-11:00

Materials

https://fair-rl.github.io/

- Slides
- Bibliography
- Revised survey on FairML

Advances in FairRL: Theory and Applications

Part I: Supervised fairML & fairRL perspectives

Mykola Pechenizkiy

IJCAI 2024, Jeju, South Korea 5 August 2024

Why fairRL

Why fairRL rather than supervised fairML; to address:

- Sequential ADM
- Primitive fairness-accuracy trade-off
- Positive feedback loops

Why fairness in RL; to prevent:

- Discrimination wrt protected attributes (gender, race)
 - unfairness in safety of exploration
 - unfairness in QoS in exploitation
- Propagating existing societal biases (RecSys, Search, SNA)

Part I: Outline

- Why are there fairness consideration in RL?
 What is fair? How is fairness defined? measured?
- When should RL-based solutions to be fair?
- Where are fairness considerations in RL?
- How can we achieve fairRL?
- What is SOTA in fairRL theory & applications?
 What's next in fairRL?

Supervised fairML and fairRL perspectives

- typical notions of fairness
- typical applications
 - societal vs. non-societal fairness
- typical approaches for achieving fairness
 - ML under independency constraints
 - fairness-utility trade-off
 - evaluation and automation

Notions of fairness in fairML

Defining and measuring fairness

- 20+ measures of fairness since FA(cc)T 2018;
- Individual or group level

- Focus on fair *treatment* or fair *impact*
- Achieving parity or satisfying preferences
- Counterfactual fairness

Fairness notions

fairML

- Group fairness
- Individual fairness
- Calibration fairness
- Counterfactual fairness

fairRL

- (long-term) Group Fairness, Individual,
- Counterfactual
- Envy-freeness
- Effort-based fairness
- Nash Social / Max-min / Generalized Gini Welfare

Use cases

societal

- Credit scoring
- Hiring, admission
- Criminal justice
- Fraud detection
- Predictive policing
- RecSys / matchmaking

non-societal

Fair Resource Allocation

- Enhancing TCP over WMN
- Virtualized O-RAN Platforms
- Cloud computing
- Use of road networks in autonomous driving

Human-robot interaction / collaboration, e.g. for managing warehouse, autonomous driving,

Group level fairness

Independence	Separation	Sufficiency
$R \perp A$	$R \perp A \mid Y$	$Y \perp A \mid R$

Independency constraints expressed as a group fairness measure

Males		Predicted Label Females Predicted L		ed Label				
		Negative	Positive				Negative	Positive
Actual	Negative	TN	FP		Actual	Negative	TN	FP
Label	Positive	FN	TP		Label	Positive	FN	TP
Non-ur Erre	niform a or _{males} <	ccuracy < Error _{fe}	emales		Favoriti P(+	ism in m male)	naking 💋) — P(+	ecisions: female

- How can we stir the pile?
- What is wrong with the training data?

THIS IS YOUR MACHINE LEARNING SKITEM? (YUP! YOU POUR THE DATA INTO THIS BIG PILE OF UNEAR ALGEBRA, THEN COLLECT THE ANSWERS ON THE OTHER SIDE. WHAT IF THE ANSWERS ARE WRONG?) JUST STIR THE PILE WITH THEY START LOOKING RIGHT

What harms are we preventing?

#GenderShades: Facial Recognition Is Accurate

Gender Classifier	Overall Accuracy on all Subjects in Pilot Parlaiments Benchmark (2017)	
Microsoft	93.7%	
FACE**	90.0%	Pilot Parliaments Benchmark
IBM	87.9%	

... if You're a White Guy

- 8.1% 20.6% worse performance on female faces
- 11.8% 19.2% worse performance on darker faces
- 20.8% 34.7% worse performance on darker female faces

#GenderShades; http://gendershades.org/

Child welfare fraud scandal

The Dutch Rutte government stepped down after thousands of families were wrongly accused of child welfare fraud and told to pay money back.

https://www.bbc.com/news/world-europe-55674146

Definitions of group fairness

Demographic parity

• Both communities have equal access to the benefit

Equal opportunity

• If you deserve the benefit, your chances of getting the benefit should not depend on your sensitive attribute

Equal odds

• If you do not deserve the benefit, your chances of getting it anyway should not depend on your sensitive attribute

Calibrated for all

• The <u>meaning</u> of the label you get should not depend on your sensitive attribute

Redlining in Credit Scoring

Source: "Home Owners' Loan Corporation Philadelphia redlining map", Wikipedia The HOLC maps are part of the records of the FHLBB (RG195) at the <u>National Archives II</u>

Redlining

Example: Census Income Dataset

P('high salary' | male) – P('high salary' | female)

Achieving fairness in fairML

- ML with independency constraints
- Removing sensitive attributes A is a bad idea
- Removing also attributes that are correlated with A is also a bad idea: accuracy drops fast if relevant predictive signal is removed
- The challenge of achieving (conditional) independence ...

Independence	Separation	Sufficiency
$R \perp A$	$R \perp A \mid Y$	$Y \perp A \mid R$

Early approaches for fairML

- Remove sensitive attributes?
- Preprocessing "data massaging"
 - Modify input data (labels)
 - Resample input data
- In-processing / constraint learning
 - Bayesian, decision trees, deep learning
- Post-processing
 - Modify models
 - Modify outputs

Kamiran, F., Calders, T., & Pechenizkiy, M. (2013). Techniques for discrimination-free predictive models. In Discrimination and Privacy in the Information Society (pp. 223-239). Springer, Berlin, Heidelberg.

Many more cost-sensitive learning ideas (apparently often naïve?) for fair classification, regression and other ML tasks as constraint learning

Variants of framing

- Consider an explicit trade-off: is the utility gain proportional to worsening of fairness?
- O-unfairness: satisfy the independency constraint as much as possible and find solution with max utility that satisfies it
- ε-max-utility: do everything possible to minimize unfairness within ε from max-utility solution

Is There a Trade-Off?

Is There a Trade-Off Between Fairness and Accuracy? A Perspective Using Mismatched Hypothesis Testing, Dutta et al. ICML 2020

• "Our most important result is to theoretically show that for a fair classifier with sub-optimal accuracy on the given biased data distributions, there always exist ideal distributions such that fairness and accuracy are in accord when accuracy is measured with respect to the ideal distributions. Through this perspective, there is no trade-off between fairness and accuracy"

FairML (not?) as Optimization

Cherry on the Cake: Fairness is NOT an Optimization Problem (Favier & Calders 2024) <u>https://arxiv.org/pdf/2406.16606</u>

- Use cake-cutting theory to describe the behavior of optimal fair decisions, which, counterintuitively, often exhibit quite unfair properties.
- Specifically, in order to satisfy fairness constraints, it is sometimes preferable, in the name of optimality, to purposefully make mistakes and deny giving the positive label to deserving individuals in a community in favor of less worthy individuals within the same community.
- *"blatantly unfair", cherry-picking, ...*

What are some of the roots of unfair ML?

Are some groups underrepresented?

Sex	Ethnicity	Highest Degree	Job Type	Class
m	native	university	board	+
m	native	high school	board	+
m	native	university	education	+
m	non-native	university	healthcare	+
m	non-native	none	healthcare	-
f	non-native	high school	board	-
f	native	university	education	-
f	native	none	healthcare	+
f	non-native	high school	education	-
f	native	university	board	+

Are historical

labels biased?

Note: bias in – bias out is absolutely not the only reason why models become unfair

Impact of decisions on population

Approving loans while aiming at DP => redistribution of scores over time: repayments 🕑

defaults

Liu et al. Delayed impact of fair machine learning. ICML 2018

https://www.microsoft.com/en-us/research/video/delayed-impact-of-fair-machine-learning/

Delayed impact of fairML

Liu et al. Delayed impact of fair machine learning. ICML 2018 https://www.microsoft.com/en-us/research/video/delayed-impact-of-fair-machine-learning/

Recap on conceptualising RL

Environment

Agent

Rewarr

State

Interpreter

Action

- Actions A an agent can take,
- States *S* in the environment the agent is in
 - (Contextual) Bandits ~ RL formulation with only a single state,
 - Markov Decision Processes (MDPs) allow for multiple states
- Policy π , guiding the agent's behavior:
 - Maximizing the total reward r over time, i.e. T interactions
 - The rewards can be immediate or delayed
 - RL agent can be in single-objective vs. multi-objective setting
 - RL agent can be model-based vs. model-free

Where fairness considerations arise in RL

- Modeling / conceptualization + design choices
 - Pre-specified rewards, but also unknown
 - Exploration safety
 - Temporal dynamics of fairness

- ...

Traditional vs. fair optimal policies

(a) Traditional

Harsh Satija et al. Group Fairness in Reinforcement Learning, TMLR 2023

When fairness (timeline)

- Past (biased)
- Now and near future
- Some distant future we are stearing towards
- All the time we want to understand and control the dynamics

Fairness is not static

Rateike et al., Designing Long-term Group Fair Policies in Dynamical Systems, FAccT 2024, WS@NeurIPS 2023

Long-term Fair Policies

- Long-term Group Fair Policies in Dynamical Systems, FAccT 2024
- Algorithmic Fairness in Performative Policy Learning: Escaping the Impossibility of Group Fairness, FAccT 2024
- A Reinforcement Learning Framework for Studying Group and Individual Fairness, AAMAS 2024

• Questioning the scope of the fairML impossibility results

Fairness dynamics in RL

Deng et al. What Hides behind Unfairness? Exploring Dynamics Fairness in Reinforcement Learning. IJCAI 2024

Learning and Exploration

- Exploration-exploitation trade-off (70s)
- Took time to rediscover in RecSys and other relevant application areas
- Took time to rediscover in fairML and fairRL
 - Fair Exploration via Axiomatic Bargaining, NeurIPS 2023

Empirical evaluation

fairML

- Benchmarks
- Single time point hold-out estimates
- Datasheets for datasets
- Model cards
- Fairness robustness

fairRL

- Simulated data
- Simulated environments
- Eval. is inherintly over time
- Exploration and exploitation aspects

Fairness robustness

- D-Hacking, FAccT 2024
 - Systematically selecting among numerous models to find the least discriminatory
 - misleading or non-generalizable fairness performance
 - parallels the concept of p-hacking
- Multiverse analysis. FAccT 2024
 - Sensitivity analysis wrt design choices along fairML solution development

Theory in fairML/fairRL

fairML

- Impossibility results
- Fairness is optimization under (independency) constraints
- Fairness is NOT an optimization problem

fairRL

- Incompatibility of fairness & efficiency (social optimality)
- Performance guarantees / bounds
- Worst-case analysis

Do we know what is achievable? (e.g. Maximal fairness FAccT 2023)

Possibility of Fairness

Empirical evidence in fairML/fairRL:

- The Possibility of Fairness: Revisiting the Impossibility Theorem in Practice, FAccT 2023
- Algorithmic Fairness in Performative Policy Learning: Escaping the Impossibility of Group Fairness, FAccT 2024
- A Reinforcement Learning Framework For Studying Group And Individual Fairness, AAMAS 2024

ML as optimization

"I want everything I touch to turn to gold"

Do we really know what we are optimizing for?

fairML as Optimization?

Fairness–Accuracy trade-off

But we want to compute expected performance in possible future worlds and steer towards a better world, not towards the past, which we expected to exibit unwanted biases. F-A trade-off framing might

be misleading!

fairML as Optimization

Achieving Fairness revisited

- Fairness Accuracy Trade-Off
- Moral Justification of fairML
- "It's not (only) about the result, it's about how we reached it."

• Will get back to this in Part IV